
Block Matrices      Linear Algebra  X. Du 

 

 Block matrices are interpreted as being partitioned into submatrices 

 We have already seen some of these partitions in Gaussian elimination and computing the 

reduced row-echelon form. 

 Another common form of block matrices is partitioned by rows or columns. 

 Multiplication is done normally, except you can break down the process with blocks. 
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o This can be useful if a block is an identity matrix or a zero matrix. 

 Inversion 

o If a matrix block form 
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 Direct sum 
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 Block diagonal matrix 

o Square matrix with the following form: 
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 nAAA ,...,, 21 are square matrices. 0 represents a block of zeros. 
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o Set of eigenvalues and eigenvectors of A is the union of those of nAAA ,...,, 21  


